Chainer Meetup #01 を開催しました

preferred

2016-01-04 15:03:39

あけましておめでとうございます!PFI舛岡です。12/19にChainer Meetup #01@スマートニュースを行いました。

参加の倍率が1.8倍と参加するだけでも大変なイベントのようでした。
(ちなみに弊社社員P氏は抽選で落選しました)
また参加率も90%以上でとても大盛り上がりのイベントでした。
会場をご提供くださったスマートニュース株式会社、会場を準備してくださった@tkngさんありがとうございます!

イベントの様子はtogetterにまとめております。

イベント概要

今回のイベントのテーマを以下の様に設定しました。

  • Chainerとはなにか?
  • Cupyとはなにか?
  • Chainerはどのように使われているか?
  • Chainerの開発はどうなっていくのか?
  • Chainerの開発を手伝うにはどうすればいいのか?

Chainer開発者全員と、Chainerをサービスに使っている担当者の方に話をして頂きました。
またLTも募集をして8名の方に話をして頂きました。

発表資料

発表に使用した資料は以下の通りです。

Chainer入門と最近の機能(@unnonouno)

CuPy解説(奥田)

超自然言語リアルタイム解析をサービスに組み込んだ話(@ixixi)

http://qiita.com/ixixi/items/a3d56b2db6e09249a519

Capitalicoでのchainer 1.1→1.5バージョンアップ事例(@arrow_elpis)

ディープラーニングにおける学習の高速化の重要性とその手法(@yukofuji)

学習済み Caffe モデルを移植してみた(@ohtysk)

ボケるRNNを学習したい(@aonotas)

深層学習ライブラリのプログラミングモデル(yutakashino)

Chainer向けGUI環境DEEPstationについて(shi3z)

Webアプリ診断AIの開発(bbr_bbq)

デモ画面

Chainer ハンズオン勉強会について(@SnowGushiGit)

アカデミアでの Chainer 利用の実例 深層ニューラルネットワークを用いた日本語形態素解析(@Ace12358)

Chainer: Development Plan(@beam2d)

Chainer Contribution Guide(@@delta2323)

イベントの雰囲気

IMG_20151219_175632IMG_20151219_171928

 

IMG_20151219_164703IMG_20151219_163707

IMG_20151219_165531IMG_20151219_163104

Chainerドーナツスポンサー

今回、Chainerロゴにそっくりのドーナツをエヌディビア合同株式会社の@yukofuji様に準備頂きました!ありがとうございます!その他にチョコや本もご提供頂きありがとうございます!
(セブ○イレブ○のドーナツが一番そっくりだったんですが、1週間前に関東で販売を停止してしまいました。。。)

CWkPmRlVAAAfegICWkPmReU8AAd-03

今後のイベント開催予定

懇親会等でも継続的にイベントを開催して欲しいとの声をたくさん頂きました。(実は)次回イベントも準備中です。詳細が決まり次第またconnpass等で告知しますので、お待ち下さい!

深層学習でバラ積みロボットの0から学習

mattya

2015-12-07 18:48:07

乱雑に積まれた物体を取り出す産業用ロボットの動作を、ディープラーニングで学習しました。

こんにちは、松元です。今回は、国際ロボット展2015にてFANUCブースで出展した「バラ積みロボットの0から学習」について解説したいと思います。

まずは次の動画をご覧ください。

背景

「物を取る」というのはロボットの最も基本的なタスクの一つで、あらゆる場面で必要となります(たとえば産業用では、カゴから部品を取り出してベルトコンベアに乗せるといった用途で頻繁に使われます)。このときに、取るべき部品が決まった位置に整然と並んでいたり、平らな面に一つだけ置かれているなら簡単なのですが、箱にぐちゃっと積まれたところから一つ取り出したいというケースもあります。このようなタスクをバラ積み取出しといいます。

様々なバラ積み取出しの活用例(google画像検索)

いま、3Dカメラによってバラ積みされた領域の深度付き画像が得られているとして、取り出したい対象(ワークという)の座標を返すことを目標とします。通常は次のような手法が用いられます。

    • 取りたいワークの写真やCADデータとパターンマッチして、目標位置を探す

ワークの形状が予め完全に分かっている場合に有効です。

    • ある程度以上の面積の平らな場所を探して、そこを目標とする(吸着やマグネット式のハンドの場合)

こちらはワーク形状が未知の場合にも使えます。

既存手法(FANUCの製品)によるワーク位置の検出 しっかりチューニングを行えば高い精度が出る

既存手法(FANUCの製品)によるワーク位置の検出
しっかりチューニングを行えば高い精度が出る

しかし、いずれの手法でも、判別の閾値などのパラメタチューニングには熟練を要します。また、特定のハマりパターンがあったときに、それを回避するのが難しいという問題もあります(今回取り組んだ円柱ワークの場合、ワークが複雑に重なっている時や、円柱が2つピッタリくっついて並んでいるときなどに、誤検出することがありました)。

今回私たちはディープラーニングを用いることで、このような問題を解決し、既存手法の熟練者によるチューニングに匹敵する精度を自動で達成することができました。

手法

セットアップ

・ワーク
鉄製の円柱(高さ5.0cm, 直径2.5cm)が200個程度箱にバラ積みされています。

ワークとハンド

ワークを吸着して持ち上げている様子

・ロボット
取り出しには、FANUC製の「LR Mate 200iD」というロボットアームを用いました。ロボット展の会場を見渡すと、あちらこちらで使われているのを目撃できるくらい、産業用では広く使われている優秀な機体です。
このアームは同じくFANUCの「R-30iB」というコントローラーから制御します。
PCからコントローラーに目標座標(x, y, z, yaw, pitch, roll)を指示すれば、そこに移動するまでの経路を自動で計算して正確に動いてくれます。
動作も高速で、3秒に1つくらいのペースでワークを取っていくことができます。

今回用いたロボット「LR Mate 200iD」(FANUC公式サイトより引用)

・ハンド
ロボットの先端に取り付け、ワークとコンタクトする部分をハンドといいますが、
今回は空気による吸着式のハンドを用いました。
先端はジャバラ状になっていて、多少ワークが傾いていても取ることができます。
吸着動作後に気圧を測ることで、ワークの取得に成功したか失敗したかを自動で判別します。

・ビジョンセンサ
箱の上方に3Dカメラがついていて、箱内部の深度付き画像を取得します。
3Dカメラとロボットの座標系の対応をキャリブレーションして、
深度付き画像から、ロボットの移動目標座標を求められるようにしてあります。

学習

学習は次のような流れで行います。
(1) 深度付き画像を撮影する
(2) 現在の予測モデルのもとで最善の(x, y)を選ぶ(学習初期では領域内の点をランダムに選ぶ)。深度付き画像からzが求まるので、この(x, y, z)を目標座標とする
(3) (x, y, z)にロボットを動かし、ワークの吸着を試み、成否を取得する
(4) (x, y)周辺の深度付き画像を切り出して、成否のラベルと組にして保存する
(5) 現在得られているデータから、画像から取得成否を予測するモデルを学習してアップデートする(この処理は数百回おきに行う)
(6) 以上を繰り返す

集めたデータの一例

集めたデータの一例。こういったラベル付きデータから、CNNを教師あり学習する

予測モデルにはChainerで実装したCNN(convolutional neural network)を用いました。目標座標周辺を切り出した深度付き画像を入力とし、取得成功確率が出力となります。
(5)での学習処理は教師あり学習ですが、学習に用いるデータセットの構築に現在のモデル自身を用いるため、能動学習の一つと捉えることができます。

ロボットを動かすのはPCから自動で指示が送れるので、ときどき空になった箱をリフィルする以外は自動でサイクルを回すことができます。ディープラーニングではデータの数を揃える必要があるので、ほっとけばどんどんデータが集まってくるという設定にすることはとても大事です。

結果

学習当初のランダムモデルでは50%ほどの取得成功率だったものが、
学習データが集まるにつれて、2000データ(約4時間)で70%、5000データ(約10時間)で90%の取得率を達成できました。

学習に伴う取得成功率の向上

学習に伴う取得成功率の向上

学習の進捗は、実際の撮影された画像に対して、CNNがどのような評価値を出力しているかを可視化することでも評価できます。
下の図は、1000データ学習後と5000データ学習後のCNNで、同じ盤面に対して評価値を出力させた図になります。明るい色で塗られている部分が、「取れる」と判断した座標になります。

学習による予測精度の向上

学習による予測精度の向上

基本的には他のワークが上に重なっていないワークの、側面あるいは端面の中心付近を狙えば取得に成功しますが、
1000データ学習の時点でも大まかにはその性質が学習できていることが分かります。
しかし、青い丸が付けてあるところのように、ワークとワークの境界部分や、上に他のワークが重なっているワークにも高い評価値が割り振られているところがあります。このようなエラーが、5000データ学習後にはぐっと減っていることが分かります。

このような精度の改善は、取りやすいワークを全て取ってしまった後のような難しい局面にて威力を発揮します。
学習前は何回も連続で失敗してしまうようなところで、数少ない取れるワークを正確に狙うことが出来るようになり、90%の取得率を達成できるのです。

本手法の意義

    • 熟練を要するチューニングのプロセスを、自動で行うことができるようになりました

ある程度までは手動チューニングで精度を高め、それでどうしても誤検出するケースを学習で改善するという使い方もできます

    • 取得するワークの形状が不定の場合にも適用できます

食材を扱うロボットや、ゴミを分別するロボットといった応用が考えられます

    • 転移学習が可能

Deep Learningの優れている点として、汎用的なモデルをひとつ作ってしまえば、様々なタスクに転移できることが挙げられます(imagenetの画像分類タスクで学習したモデルが、画像からのキャプション生成に使えるなど)。
バラ積み取出しにおいても、複数種類のワークで学習を行ったり、シミュレータ上で大量に学習したものを、転移学習することも可能でしょう

    • 分散学習が可能

複数台で同時にデータを集めれば、それだけ高速に学習できます

関連する研究

Supersizing Self-supervision: Learning to Grasp from 50K Tries and 700 Robot Hours
一般物体をハンドで掴むロボット。本研究と同じように、ランダムに掴むところからデータを貯めて学習を行う。取得したい物体が任意の一般物体であり、ハンドも挟むタイプのものであるため難しい問題設定。700時間という時間をかけても取得成功率は70%くらいでちょっと悲しい。

Dex-Net 1.0: A Cloud-Based Network of 3D Objects for Robust Grasp Planning Using a Multi-Armed Bandit Model with Correlated Rewards. Ken Goldberg, et al. ICRA 2016
UC BerkeleyとGoogleの共同研究で、Bay area robotics symposium 2015で発表があった。
10000種類の物体の3Dモデルを用意して、シミュレータ上でどこが掴みやすいかを1000台のマシンで並列に学習するという。
産業用ロボットは指示されたとおりに非常に正確に動き、また、学習初期の頃から実機でいきなり実験すると物を壊してしまう可能性もあるため、シミュレータを使うことは理にかなっている。
一方で、バラ積み取り出しのよくある失敗例として、取得動作の際にワークが崩れて動いてしまったり、ワーク間の光の反射によって位置推定がずれたりといった、シミュレーションしにくい要素が絡んでいることも事実である。
シミュレータで得た学習結果を、いかに実機に適用するのかというのは今後の大きな課題であろう。

Go言語でのCI環境構築

kashihara
エンジニア

2015-12-01 10:55:56

PFNの柏原です。Go言語製のソフトウェアのCI(Continuous Integration, 継続的インテグレーション)環境の構築方法(導入方法)について解説します。想定としてはgithub上にホストしているOSSプロジェクトのソースツリーをCIの対象とします。OSSのpublicリポジトリなため、無料で使えるサービスを利用対象とします。

紹介する各CIサービスすべてでGo言語を扱えますが、まず最初にサービスを利用する上で各サービスについて結論から述べます。その後、各CI環境(OS、Goバージョン)、設定ファイルの例を説明します。

今回はTravis CICircleCICodeshipAppVeyor の4つのサービスを紹介します。

結論から

結論から書きますと、Linux, OS X, Windowsの各種OSプラットフォームで同時にCIを動かしたいなら、Travis CI(Linux, OS X), CircleCI(Linux), AppVeyor(Windows)のような構成で利用するとよいでしょう。Travis CIはMulti-OS Featureがあるため、1つの設定ファイルでLinuxとOS XでCIを同時に実行できそうです。

Travis CIとCircleCIはどちらも同じくらい設定は簡単そうに見えます。Travis CIのほうが老舗でCircleCIは設定記述がモダンな印象があります(CircleCIの公開日を調べていませんが…)。CircleCIは所々モダンさを感じるところですが(設定記述の省力化)、かえって設定が省略されすぎており、また、ドキュメントから設定方法が探しづらい面もあります。その点のバランス加減は、採用者の好みがわかれるところでしょう。また、Travis CIはsudoコマンドが扱えるため、追加のバイナリパッケージをインストールできたりするのが便利かもしれません。ここはTravis CIがVMとコンテナ型の両方の形式をサポートしている強みです。
Codeshipはビルドログが非公開な点がOSSには向いてなさそうです。また、使い方・環境情報のようなドキュメントが他サービスと比べて少なく、比較したり調べづらいです。具体的にはCIの実行環境情報が少ないのが難しいところです。

Windowsも使うならAppVeyorがあります。必要そうなソフトウェアはおおよそ揃っているように見えます(Installed Software)。実行環境は64ビットCPU(x64)ですが32ビットバイナリも提供されています。他サービスとの細かい比較はしていませんが、必要十分な機能が揃っていると感じました。

特徴としてはTravis CIはVMベース/コンテナ型の両方を採用してるようです。CircleCIはコンテナ型、CodeshipはDockerらしい記述がドキュメントから見つかります。AppVeyorは特に見ていませんが、WindowsなのでVMベースみたいですね。

各サービスいずれも、ビルド結果の通知にはE-Mailやチャット(Slack、HipChat)などに対応しているようです。

Goリポジトリのサンプル

設定ファイルは後に貼り付けますが、リポジトリ及びバッジ(ビルドステータス)などを確認したい場合は以下のリポジトリを参照してください。わざとテストが失敗するようなコードを書いています。

EMNLP2015読み会を開催しました

海野 裕也
リサーチャー

2015-11-02 10:59:34

海野です。10/24に、リクルートテクノロジーズさんの会議室で、EMNLP2015読み会を開催しました。
10件の発表と、およそ40人の参加者が集まりました。
昨年も開催しましたが、規模が2倍程度になり、この分野への注目度が伺えます。

特にEmbeding系の論文が多かったらしく、EMNLPのEはEmbeddingのEではないか、という皮肉があったそうです。
10本の発表中、2本がattentionベースの手法で、Embedding、RNNに続いて次のトレンドになりつつあるのかなという感触を得ました。

当日のTwitterの様子は、togetterにまとめました

最後に、会場提供や運営を手伝っていただいた、リクルートテクノロジーズ様と、@yag_aysさんに感謝いたします。

続きを読む »

Chainer Meetup #0 を開催しました。

preferred

2015-10-19 13:57:49

2015年10月14日に、Chainer Meetup #0を開催しました。

こんにちは、PFI エンジニアの舛岡です(前回の松元さんに習い自己紹介を後ろに書きました)。製品事業部で、何でも屋として仕事をしています。research ブログに投稿する日が来るとは思ってませんでした。

Meet Upの概要

今回のMeet Upは、「開発陣がコントリビュータの方に会ってみよう」をコンセプトに開催をしました。(開発陣の2名が出張でいないという・・・・)。そのため、コントリビュータの方を招待し、13名の方に参加して頂きました。

まず始めに得居さんから、Chainer 1.5の開発方針について話をし、その後、参加者の皆様に以下の内容でLTをして頂きました。

  • Chainerをどのような場面で使用されているのか?
  • Chainerの良いところ
  • Chainerの改善点・もっとこうしてほしい

LTの総括

Chainerをどのような場面で使用されているのか?
  • RNN/CNNのプロトタイピング
  • 画像認識(研究/ウェブサービス)
  • 自動翻訳
  • 為替市場の時系列データ分析
  • 音声認識

など

Chainerの良いところ
  • 環境構築が簡単
  • 可読性が高い
  • 複雑なネットワークを構築できる
  • 入力データを柔軟に変更できる

など

Chainerの改善点・もっとこうしてほしい
  • Save/load機能
  • もう少し速度がほしい
  • コミュニティの強化:交流会増やして欲しい
  • ベンチマークが欲しい

などなど

発表資料

以下は、発表資料(アップされたのもののみ)です。

@beam2d


@mitmulさん


@jnoryさん



@sinhrksさん

@jnishiさん


@y-tag
https://docs.google.com/presentation/d/1d2VTgaPpdHM2dgSNX7HEL2K-_YgditTa2wuqoejxD5Q/edit?usp=sharing

@odashi

@kikusu

感想

Chainerがどのような場所で使われているか、どういう課題があるかを知ることができました。
今後も継続的にこのようなイベントは行う予定です。
詳細が決まり次第ご連絡します。

 

画風を変換するアルゴリズム

mattya

2015-09-10 18:38:02

Deep Neural Networkを使って画像を好きな画風に変換できるプログラムをChainerで実装し、公開しました。
https://github.com/mattya/chainer-gogh

こんにちは、PFNリサーチャーの松元です。ブログの1行目はbotに持って行かれやすいので、3行目で挨拶してみました。
今回実装したのは”A Neural Algorithm of Artistic Style”(元論文)というアルゴリズムです。生成される画像の美しさと、画像認識のタスクで予め訓練したニューラルネットをそのまま流用できるというお手軽さから、世界中で話題になっています。このアルゴリズムの仕組みなどを説明したいと思います。

概要

2枚の画像を入力します。片方を「コンテンツ画像」、もう片方を「スタイル画像」としましょう。
コンテンツ画像とスタイル画像

このプログラムは、コンテンツ画像に書かれた物体の配置をそのままに、画風をスタイル画像に変換した画像を生成します。

生成された画像

いろいろな例を見てみましょう。コンテンツ画像は先ほどの猫の画像で、左がスタイル画像、右が生成された画像になります。
Screen Shot 2015-09-10 at 2.03.20 PM

Screen Shot 2015-09-10 at 2.03.35 PM

美術作品をスタイル画像とすると、その画風をかなり良く再現してくれます。色合いだけでなく、小さめの空間パターンまで似せて生成されます。ここには載せないですが漫画作品やゲーム画面なども面白い結果を生み出してくれます。

Screen Shot 2015-09-10 at 2.03.29 PM

スタイル画像は絵である必要はありません。美しく生成するのは難しいですが…
他にも寄木細工のような工芸品や、ロマネスコブロッコリーのようなフラクタル系の画像もスタイル画像として優秀でした。

Screen Shot 2015-09-10 at 2.03.24 PM
正直ここまでできるとは思ってなかったのですが、新聞や設計図のような画像でも、そのスタイルを抽出することができました。特に、新聞の文字もどきを塗りに使っているところや、設計図のカクカクした感じが猫の輪郭に当てはまっているのには感動です。

元論文や、こちらのサイトなどにも面白いサンプルが多数掲載されているので、もっと見たい方はご覧になってみてください。また、これらの例は全部上のリンクのchainer-goghで生成できるので、興味のある方はぜひ自分で作ってみてください。

アルゴリズムの解説

モデル

このアルゴリズムはCNN(convolutional neural network)を使って画像を生成します。
このCNNとしては予め物体認識で訓練したニューラルネットを使用し、これ以上の学習は行いません
caffeのmodel zooにILSVRCなどの画像認識ベンチマークで好成績を収めた学習済みモデルが多数公開されており、それを使います。Chainerはこれらのcaffemodelを読み込むことができるのです。

上でお見せした生成例は、VGG 16-layerのCNNモデルを使用しています。これは、次のような構造になっています(後半のFC層などは省略)。

使用したCNNの構造

書かれている数字は[チャネル数*縦*横]を意味します。入力画像はRGBの三色なのでチャネル数が3ですが、層が進むとチャネル数が増えていきます。縦横解像度はこの図は256*256を例にしましたが、変えても動作します。
本アルゴリズムでは中間層である①〜④からの出力を使用します。

CNNの中間層

猫の画像をこのCNNに入力し、中間層の出力を可視化すると次のようになります。
猫画像を入力した時の中間層
①~④は、上のVGGの図と対応します。中間層はもっとチャネル数が多いですが、その中から3つのチャネルの画像を選び出して描いています。
CNNの場合、深い層まで進んでも空間的な位置関係は保たれる(④の場所でもかろうじて猫にみえる)ことは重要です。④で左上の方にある出力は、入力画像でも左上の方の特徴を表しています。これは、CNNが画像のローカルなフィルタ操作を繰り返しかけていることに起因する特徴です。

Deep Neural Networkは層が進むにつれて、タスクにとって重要な特徴量を強調するように情報処理が進んでいくと言われています。
そのことを④の512*32*32のデータのみを使って入力を復元することで、調べてみます。
④からの復元
この絵から分かるのは、まず、CNNを10層以上進んでも、元画像のかなりの情報が残っているということです。一方で、色合いや質感は、元画像から少し変わっています。このことは、もともとこのCNNが物体認識のタスク用で、多少色合いや質感が変わっても物体は同じ物体とみなしてほしいため、その情報を、形などの情報と比較して相対的に弱めているからと考えられます。
本研究のアイデアは、この情報が弱まっている部分を、別の画像の画風に置き換えてやれば、コンテンツ画像の形状を保ったまま別の画風に画像を変換できるのではないか、ということになります。

スタイル行列

画風の情報を表現するために、スタイル行列という概念を導入します。これがこの論文の一番のポイントです。
この行列は、同じ中間層の各チャネル間の相関を計算したものです。入力画像で言えば、チャネルはRGBの各色に対応するので、赤と緑の相関など、つまり「画像全体でどんな色が使われているか」という情報を表すことになります。もう少し層が進めば、「どれくらいの太さの線で書かれているか」といった情報を取り出すことが出来、より深い層で統計すると「どの色とどの色が隣り合って描かれやすいか」「どのようなテクスチャが使われているか」といった情報が反映されると考えられます。

猫画像における、VGGの①〜④の各中間層でスタイル行列を計算したものを可視化すると、以下のようになります。
cat_style
この行列の2行3列目は、チャネル2とチャネル3の相関をとったものになります。
ここに、色合い、筆のタッチなどの画風情報が埋め込まれることになります。

目的関数

中間層④の出力をコンテンツ画像と同じようにしつつ、スタイル行列はスタイル画像と似せてやることで、ゴッホ風猫画像を生成できると考えられます。
すなわち、このアルゴリズムで最小化したい目的関数は、
中間層のコンテンツ画像とのズレ + スタイル行列のスタイル画像とのズレ
という形になります。

前者のコンテンツ画像とのズレは、物体のおおまかな配置や形状が合うようにしたいので、抽象的な情報が抽出されてる深い層で値の差を測ります。ここを浅い層で差をとってしまうと、ピクセル単位の細かいズレに鋭敏になってしまい、大胆な画風の変更が出来なくなってしまいます。

後者のスタイル画像とのズレは、浅い層でも深い層でも差を測ります。細かい筆のタッチのような情報は浅い層で、大きめの空間パターンは深い層で取り出すという狙いです。

画像の更新則

目的関数が定まったので、あとは確率勾配降下法などで最適化を行います。
画像をCNNに通して中間層を求める処理、中間層の相関を計算する処理、コンテンツ画像・スタイル画像とのズレを計算する処理はすべてChainerのFunctionで書かれているので、backward()を呼び出すだけで各パラメタを動かすべき方向を計算できます。

一般のニューラルネットの学習と異なるのは、動かすパラメタがニューラルネットの結合荷重ではなく、入力画像の方だということです。今回のアルゴリズムではニューラルネットは固定されています。
入力画像はまず乱数で作ったノイズ画像からはじめて、backwardで計算した勾配を利用して最適化していきます。chainer-goghでは、ニューラルネットの学習によく用いられるAdamを使って最適化しています。この部分も、ChainerのOptimizer機能を使えば、update()を呼ぶだけでパラメタの更新をやってくれます。
更新されていく猫

画像が生成されていく様子を動画にしてみました。まずスタイル画像の模様を全体に描いて、それを少しずつコンテンツ画像にマッチするように変化させていくという描画方法をするようです。おそらく、スタイル画像とのズレのほうが浅い層から誤差が伝搬してくるので、先に最適化されるのだと考えられます。

結果の分析

さて、本当にこのゴッホ猫が、中間層出力がコンテンツ画像と似つつ、スタイル行列はスタイル画像と似ている、という状態になっているのかを確認してみましょう。

まず、猫画像の中間層出力とスタイル行列を再掲します。
cat_cnn

cat_style

次に、ゴッホ画像です。

gogh_cnn

gogh_style

最後に生成したゴッホ猫です。

goghcat_cnn

goghcat_style

ちょっとわかりづらいですが、中間層④の出力は、ゴッホよりも猫に近いこと、そしてスタイル行列は①〜④まですべてゴッホの方に近いことが確認できます。こうして、形状をコンテンツ画像から、画風をスタイル画像から受け継いだ画像が誕生したわけです。

おわりに

画像の自動生成は、Deep Learning研究者の一つの夢であり、多くの研究者が研究しているテーマです。
現在成功しているアプローチは大きく分けて2つあります。

まず1つ目は、オートエンコーダー(画像を低次元のベクトルに符号化するNNと、符号から画像に戻す復号NNを両方同時に学習する)を使う方法で、訓練データの画像が符号の空間で正規分布のようなきれいな分布をしていれば、逆に符号側を正規分布からサンプルし、それを復号NNで画像化してあげれば、それっぽい画像が生成されるだろうという発想です。VAEやAdversarial networkを使った研究が有名ですが、このアプローチは”もやっと”した画像が生成される事が多く、手書き数字や顔画像の生成はうまくいっているものの、より大きく複雑な画像生成はそれほど成功していません。
Adversarial
Adversarial networkで生成した自動車、動物、船

2つ目のアプローチは画像を反復的に改良していく方針で、物体認識NNが「犬」と判断するような方向に入力画像の方を動かしていけば犬の画像が描けるだろうという発想になります。ちょっと前に流行ったDeep Dreamがこれにあたります。
しかし、あれは”もやっと”はしていなくても、グロテスクな画像を生成してしまう傾向にありました(まだ見たことない人はDeep Dreamで検索してみましょう)。これは、自然な画像とは似ても似つかなくても、物体認識NNを騙せてしまうことに原因が有ります。

今回紹介した研究は2つ目のアプローチですが、Deep Learningを使って”もやっと”もグロくもない画像を生成することができます。もちろんコンテンツ画像とスタイル画像を入力に必要としているので全自動ではないのですが、コンテンツ画像は深い層の出力のみ、スタイル画像はスタイル行列のみしか情報を使っていないので、画像の完全自動生成に一歩近づいたと言えるのではないでしょうか。今後の発展に要注目です。

怪我をしても歩ける6足歩行ロボットの学習

KumeAyaka

2015-08-31 17:34:43

こんにちは。コロンビア大学の久米です。7月からの2ヶ月間、ロボットと機械学習をテーマにインターンをしました。この記事は先日、ustreamで発表した内容のダイジェスト版となっています。

インターンでは、6本脚ロボットが脚を失ってもすぐに新しい歩き方を学習する方法の実装を行いました。具体的にいうと、Natureで2015年に発表された、Robots that can adapt like animals(PDF)の再現実験です。ロボットの組み立て、シミュレーション(事前学習)、手法の実装、実験をしました。

下の動画を御覧ください。6本脚ロボットは、6本の脚を使って歩行します。左側の動きが通常時の動き方です。歩行中、脚を一部失ってしまうこともありえます(下の写真)。そうすると右側の動画のように同じように脚を動かすだけでは、前向きに歩くことができなくなってしまいます。

今までの方法では、ロボットが脚を損失した状態で前進する歩き方を見つけるためには、事前に色々な状況に対して歩き方を設定しておくか、学習するとすればたくさんの時間がかかっていました(強化学習など)。
提案手法では、脚がなくなってしまっても数回から数十回程度の試行で前進する方法を発見することができます。下の方に結果を掲載していますが、実際に実験してみると、1本脚の先がなくなったり、2本の脚が動かなくなっても、5種類の歩き方を試しただけで前進の方法を発見しました。

手法のコンセプトは次のような感じです。
まずは、健康な状態の時に色々な歩き方を試しておきます(事前学習)。上手く前進できなくなった時には、事前に覚えていた歩き方の中からいくつか試して、良い方法を発見します(Adaption step)。

propose

事前学習

実際の歩き方は36個のパラメーターを指定して決定するので、歩き方は膨大に存在します。
色々な状況に対処するためには、ただ良い歩き方を記憶するだけではなく、色々な状況に対して良い歩き方を記憶する必要があります。論文では「各脚の着地時間」をその指標にし、パフォーマンスのマップを作成しています。つまり、各脚の着地時間という6次元の値に対して、着地時間も5通りに離散化して、各脚0%,25%,50%,75%,100%に分類し、合計で15625通りの状況を想定します。

下の図が、このマップを2次元に表したもので、脚1と2の着地時間によって、大きい四角形の場所が決まり(左下ほど着地時間が少ない)、3と4の着地時間によって、各大きい四角形の中の小さな四角形の場所を決定、5と6については小さい四角形の中の場所を決定します。
各脚の着地時間に応じて場所が決定し、そこにパフォーマンスとパラメーターを記憶していきます。

map

jizeng

事前学習のやり方
  • 一つの歩き方を試す
  • 歩き方の距離(パフォーマンス)と各脚の着地時間(状況)について計測する
  • その状況の距離が今まで記録されていなければマップに記録する。記録されていても、今回の方がパフォーマンスが良ければ記録を上書き、悪ければこの歩き方は捨てる
  • 今までに記録されている歩き方を少し変化させて歩き方を試す(上に戻る)

何千万回もの試行が必要なため、事前学習は実機ではなくシミュレーション上で行います。

事前学習の結果

シミュレーションは、Open Dynamics Engine(ODE)という物理シミュレーターを使って行いました。

私は実際に 5188万4543回のシミュレーションを行って、マップを作成していきました。
Amazon AWSを使って並列実行し、10日間位で学習しました。

params
この図は、横軸がシミュレーション回数で、縦軸がマップの中で埋まったマスの個数です。
仮に全部埋まったとしたら15625マスですが、新しいパラメーターを既存のパラメーターから作っていくことと、動きようがない部分(0,0,0,0,0,0)なども存在するので全部は埋まりません。
result1

これらが、マップの途中経過です。回数の下の数字は最大値と平均値です。図は、最終マップの最大値を1(赤)とした時のそれぞれのマスのパフォーマンスを示しています。初めの1000万回くらいで、マップのマスの数自体は増えなくなりますが、パフォーマンスは向上しているのがわかります。

Adaption step

mboa4
実際にロボットが壊れてしまった時には、マップの中から新しい歩き方を試します。
その時には、今歩いている方法はあまり良くないので、それに似た歩き方を避けて、かつパフォーマンスが高そうな歩き方を探していきます。

mboa3
(論文より引用)

初めは壊れたロボットでの歩き方については、実際には試していないため確信度は全て最低レベルで、パフォーマンスは事前学習の時の値です。
一度実際に歩くと、マップ上で既に観測された歩き方に近い歩き方は、確信度が高くなっていき、それと同時にパフォーマンスも観測された値に応じて更新されていきます。マップの更新にはBaysian optimizationを使います。

実験結果

最後に、実験結果の動画です。

動画の見方

脚(6個の数字): 動画の歩き方において各脚がマップの中のどこにいるかを示しています。
各脚0-4までの数字。(着地時間 0%:0 25%:1 50%:2 75%:3 100%:4)

パフォーマンス:計測した値

期待MAX:更新されたパフォーマンスマップでの最高値

パフォーマンスマップの1.0は事前学習での最高値(0.17)。
色々な歩き方を試すうちにマップがどんどん下方修正されていきます。

確信度は青ほど低く、実測されると赤色になっていきます。

最後の方にでてくる相対的パフォーマンスマップというのが、ロボットがその時に持っているパフォーマンスマップの最大値を1としたときのパフォーマンスマップです。

このように、わずか数回の試行で、前進方法を学習することができました!2つ目の実験のように、実際には1回目で良い歩き方を発見した場合でもまずは、もっと良い歩き方がないか探します。調べているうちに全体のパフォーマンスが更新されていって、期待されるパフォーマンスが下がってきて、一回目の歩き方が良い歩き方だということが発覚します。

事前学習のシミュレーションの精度はどうしても完璧というわけにもいかないのですが、それでもこのように成果がでました。
この手法を用いれば、状況が変わった時に、改めて学習をするのではなく、理想的な状況(シミュレーション)にたいして学習を行えば、すぐに色々な状況に対処できるため、常に人間の監視下にいるわけではないロボットに対して応用できれば、突然の事故などに対応できると思います。

ICML2015読み会を開催しました

大野 健太
エンジニア

2015-08-31 08:31:28

大野です。夏も終わりますね。

先日8月20日に、株式会社ドワンゴ様のセミナールームにて、ICML2015読み会を開催いたしました。

トップレベルの会議に投稿された論文を真正面から紹介する勉強会でしたので、どの位の方々が興味を持つのか不安がありましたが、幸いにも前回のNIPS2014読み会に引き続き、100名近くの方に参加していただきました。休憩時間も含めて多くのディスカッションや質問がなされていたようです。懇親会にも40名近くの方々が参加していただきました、懇親会では、発表もしていただいた神嶌さんによるKDDの参加報告も行われました。

また、今回初めての試みとして、当日の様子をドワンゴ研究開発チャンネルにて生放送配信しました。私の予想をはるかに超えて、のべ1000名弱の方が来場したようです。ご視聴いただきありがとうございました。配信に関する感想なども今後の参考にさせていただきます。

参加者、発表者、視聴者の皆様のご協力で充実した勉強会になったと考えております。ご参加いただきありがとうございました。また、会場提供及び生放送配信をしていただいたドワンゴ様には改めてお礼を申し上げます。今回の勉強会を踏まえて、今後も機械学習の勉強会を継続して開催していきたいと考えておりますので、ご賛同・ご協力いただけると大変ありがたいです。

アンケート結果

続きを読む »

機械学習の経済学:クラウドはIoTの夢を見るか

hido
Chief Research Officer

2015-08-21 07:16:37

比戸です。夏の思い出、もう作りましたか?

今回はPreferred Networksのポジショントークをします。と言っても、ディープラーニングではなく、Internet of Thingsのほうです。

前回IoT関連のブログ「のび太とインターネット・オブ・シングス」を書いてから1年半弱、枯れたバズワードどころか、IoTはあらゆる業界を巻き込んだムーブメントになりつつあります。ちょうど昨日発表された、ガートナーの2015年度版ハイプサイクルでも、去年に続きハイプカーブの頂点に位置付けられていました。

IoTではコネクションとデバイスの管理、プロトコルの互換性、セキュリティについての議論が盛んですが、それは脇において、我々はいつも通りデータ解析の話をしたいと思います。 興味は「クラウドコンピューティングはIoT向けデータ解析でも唯一の主役となるのか?」です。 結論はずばり「そんなにうまくはいかないよ、特にインダストリアルな、機械学習頼みの応用ではね。」です(ほら、ポジショントークっぽくなってきた)。

続きを読む »

巨人たちが語るディープラーニングの未来(翻訳記事)

hido
Chief Research Officer

2015-08-12 11:37:56

比戸です。スムージーの美味しい季節ですね。

今回は「ディープラーニングの未来」というパネルディスカッションに関するブログの翻訳をお送りします。この業界の有名人が多数参加していて、とても興味深い内容だったため、日本のコミュニティでも共有できたらと思ったのです。

それは2015年7月に開かれた機械学習の国際会議・ICML内のDeep Learning Workshopの企画でした。元記事はワークショップ主催者のKyunghyun Cho氏のBrief Summary of the Panel Discussion at DL Workshop @ICML 2015です。ご本人の許可を得られたので、以下に日本語訳を掲載します。なるべく原文に忠実に訳したつもりですが、分かりづらい部分は意訳が入っているため、もし誤りがあればご指摘下さい。

— ここから翻訳

<はじめに>

ICML 2015で開かれたワークショップのフィナーレは、ディープラーニングの未来についてのパネルディスカッションだった。数週間に及ぶワークショップ主催者間のメール往復と議論の末、我々は以下の6人のパネリストを招いた。

続きを読む »

12345...