2016年夏季インターンシップ開催報告

大野 健太
エンジニア

2016-10-28 18:41:49

PFI・PFNでは今年8, 9月に夏季インターンとして14名の方に来て頂き、機械学習・深層学習に関する様々なプロジェクトに取り組みました。このブログエントリでは、PFI・PFNのインターンシッププログラムの概要と、今年のインターンシップ、特に最終成果発表会についてを紹介します(写真は中間発表のポスター発表の様子です)。

2016%e3%82%a4%e3%83%b3%e3%82%bf%e3%83%bc%e3%83%b3%e4%b8%ad%e9%96%93%e7%99%ba%e8%a1%a8

PFI・PFNのインターンプログラムについて

PFI, PFNでは、2010年からインターンシップを実施しています(PFNは2015年から)。夏季のインターンシップは毎年行っており、また毎年ではありませんが、春季にもインターンを実施しています。PFI・PFNのインターンシップの特徴として、8, 9月の2ヶ月間と比較的長期であること、インターンで行うプロジェクトのテーマに精通している社員がメンターにつき一緒にプロジェクトを進めていくこと(大抵の場合1人の学生に対してメンター2人)、インターン中の成果は論文やOSSなどの形で可能な範囲で公開できることなどが挙げられます。

準備に関しても4月から募集要項の作成を進めており、春季インターンも含めると、1年のうち半分以上はインターンに関して何らかのプロジェクトが動いていることになります。PFI・PFNがここまでインターンシップに力を入れている理由として、インターンを行った後に社員としてPFNに来ている方がメンバーとして活躍していること、社員の側もインターンで来ていただく学生の方々から最新の研究について学んでいること、インターンでのプロジェクトが学生の方の研究・学業にも直接的・間接的に役に立っているという自負があることなどが挙げられます。

選考は書類審査・コーディング審査・面接審査で実施しております(選考方法に関しては今後変更になる可能性は十分あります)。コーディング試験に関しては別のブログエントリにて、過去の選考で出題した課題を公開しておりますのでご参照ください。選考では、本人の興味・研究分野・得意な技術などを考慮し、指導できるメンターとの間でマッチングを行います。幸いなことに、PFI・PFNでのインターンを希望していただける方は多く、また、皆さん優秀な方が多いので、毎年選考には頭を悩ませています(そして、大体毎年想定以上の人数を採用してインターン期間中はてんやわんやになります)。今年の募集要項は過去のNewsをご参照ください。

今年の夏季インターンについて

PFNが事業を拡大し、人数面・設備面でキャパシティが増えたことで、今年の夏季インターンでは14人と例年以上に多くの方に参加していただきました(倍率としては例年と同等程度でした)。今年4月にオフィスを本郷三丁目から大手町に移転した時には空席がたくさんあると思っていたのですが、実際にインターンを開始したら、危うく席が足りなくなりそうになり、若干ヒヤヒヤしました。

インターンシップの募集する際に、大まかなテーマは設定していますが、具体的にどのようなテーマで行うかは採用後にインターン生とメンターとの間で議論を行い、プロジェクトの方向性を決めていきます。今年のテーマは以下の通りです。どのプロジェクトでも関しても異常検知・強化学習・深層生成モデルなどに関する最先端のテーマに取り組んでいただきました。

  • 対話における商品の営業
  • Automatically Fusing Functions on CuPy
  • Generation of 3D-avatar animation from latent representations
  • Response Summarizer: An Automatic Summarization System of Call Center Conversation
  • Imitation Learning for Autonomous Driving in TORCS
  • 3D Volumetric Data Generation with Generative Adversarial Networks
  • DQN with Differentiable Memory Architectures
  • Anomaly Detection by ADGM / LVAE
  • Multi-modal Deep Generative Model for Anomaly Detection
  • CNN based robotic grasping for randomly placed objects by human demonstration
  • Bayesian Dark Knowledge and Matrix Factorization

今年の新しい試みとして、中間発表・最終発表を従来の口頭発表形式から、ポスター形式に変更しました。また、最終発表は一般公開し、外部の方も参加していただけるようにしました。発表をポスター形式にしたことで、インターンの学生の方たちがPFI, PFN社員やお客さんと双方向の議論が出来たのはよかったのではないかと思います。最終発表会は当初2時間を予定していましたが、終了時間が過ぎても活発に議論が続いていました。最終発表会当日のポスターはリンク先のconnpassページにまとめておりますので、是非ご覧になってください(発表資料は順次追加していきます)。

今後のインターンシップに関して

PFNでは(私がPFN所属なのでこのような主語を置きます)来年以降も夏季インターンシップを実施する予定で、募集要項は4月頃に掲載する予定です。また、PFNでは、春季インターンなどの通年インターンシップやアルバイトも随時実施しております(通年でのインターンシップはまだ仕組みが整備されていないため、受け入れられる数が限定されていますが、HPへの募集要項の掲載などの準備を進めています)。PFI・PFNでのインターンシップやアルバイトに興味のある方は是非ご一報いただければと思います。

Chainer MeetUP #03 を開催しました

Hideto Masuoka

2016-07-15 20:36:54

最近得居さんに雑なあだ名を付けられて、凹んでる舛岡です。

7/2(土)にChainer Meetup #03をドワンゴ様セミナールームで行いました!

今回も、アカデミックや企業で活躍されている方々にお話しして頂きました。
ドワンゴ様には前回に引き続き今回も会場をお借りしました。またニコ生の放送もお手伝い頂きました。この場を借りてお礼を申し上げます。

Chainer Meetupでの資料

Chainer, CuPy入門 @unnonounoさん


Chainer Update v1.8.0 -> v1.10.0+ @beam2dさん


シンパーセプション研究におけるChainer活用事例 @n_hidekeyさん


Chainerを使って細胞を数えてみた @samacobaさん


ヤフー音声認識サービスでのディープラーニングとGPU利用事例 Yahoo! Japan 磯部さん


NVIDIA更新情報: Tesla P100 PCIe/cuDNN 5.1 NVIDIA 井﨑さん


俺のtensorが全然flowしないのでみんなchainer使おう @hidesukeさん


深層学習ライブラリの環境問題 @yutakashinoさん


Peephole connectionsを実装してChainerのcontributorになった話 @Kotaro_Setoyamaさん


Chainerを使って白黒アニメの彩色実験をしてみた @Eiji_Kbさん

Real-Time Style Transferについて @_mayfaさん


On the benchmark of Chainer @delta2323_


ドーナツスポンサー

今回も エヌビディア合同株式会社様に、ドーナツスポンサーになって頂きました!
毎回準備していただく エヌビディア合同株式会社様、@yukofujiさんには感謝しております!

IMG_0056 - コピー IMG_0057 - コピー

当日の様子

IMG_0048 - コピーIMG_0062 - コピーIMG_0053 - コピーIMG_0058 - コピーIMG_0065 - コピー IMG_0079 - コピー

IMG_0059 - コピー IMG_0071 - コピー 受付 IMG_0084 - コピー IMG_0086 - コピー

 

夏季インターンのコーディング課題を公開します

大野 健太
エンジニア

2016-07-01 09:14:57

PFNの大野です。暑くなってきましたね。

PFI/PFNでは毎年8, 9月にインターンシップを実施しています。2ヶ月間と日本で行われるインターンシップの中では比較的長期間のプログラムですが、毎年多くの方にご参加いただいています。我々自身、インターンで来ていただく方から多くの事を勉強することができ、最も力を入れているイベントの1つです。今回は本社を大手町に移転してから初めてのインターンシップです。今年は例年以上の応募をいただき、過去最大規模でのインターンシップとなりそうです。

さて、インターンシップの選考では、応募者の方々にコーディング課題を解いていただいています。このコーディング課題は情報科学の基礎知識・プログラミング能力・問題解決能力を測ることを目的としており、毎年担当者が趣向を凝らした問題を作成しています。例年、どのような問題がコーディング課題として出題されるのか問い合わせをいただいておりましたが、公平性の観点からお答えできることが限られておりました。

そこで今回、過去のインターンの選考で出題したコーディング課題を公開することにいたしました。PFI/PFNのインターンに興味のある方はぜひ参考にしていただければと思います。改めて見ますと、我々の会社が得意としているアルゴリズムとデータ構造・文字列処理・画像処理・機械学習などのテーマでの出題が多かったようです。これらの分野を勉強・研究する方にとっても良い練習問題になるのではないかと思います。

  • 2011年(テーマ:文字列処理・回文)問題文
  • 2012年(テーマ:文字列処理・一般化しりとり)問題文
  • 2013年(テーマ:グラフ・探索アルゴリズム)問題文
  • 2014年(テーマ:画像処理・テンプレートマッチング)問題文
  • 2015年(テーマ:機械学習・前処理・教師あり学習)問題文
  • 2016年(テーマ:深層学習・AutoEncoder・ハイパーパラメータの決定)問題文

PFI/PFNのパーティーでプログラミングビンゴ大会を開催しました

海野 裕也
リサーチャー

2016-06-17 13:37:03

海野です。先週の金曜日に、PFIの設立10周年およびPFI/PFNのオフィス移転を記念してパーティーを行いました。主に、株主様や取引先様、また社員のご家族を呼んだパーティーで、ホテルのパーティー会場を借りて行いました。 この中でプログラミングコンテストビンゴ大会という、おそらく日本で(世界で?)類を見ない余興を実施しました。 今日は当日の様子と、開催の経緯をお伝えしようと思います。


IMG_8252

続きを読む »

Chainer Meetup #01 を開催しました

Hideto Masuoka

2016-01-04 15:03:39

あけましておめでとうございます!PFI舛岡です。12/19にChainer Meetup #01@スマートニュースを行いました。

参加の倍率が1.8倍と参加するだけでも大変なイベントのようでした。
(ちなみに弊社社員P氏は抽選で落選しました)
また参加率も90%以上でとても大盛り上がりのイベントでした。
会場をご提供くださったスマートニュース株式会社、会場を準備してくださった@tkngさんありがとうございます!

イベントの様子はtogetterにまとめております。

イベント概要

今回のイベントのテーマを以下の様に設定しました。

  • Chainerとはなにか?
  • Cupyとはなにか?
  • Chainerはどのように使われているか?
  • Chainerの開発はどうなっていくのか?
  • Chainerの開発を手伝うにはどうすればいいのか?

Chainer開発者全員と、Chainerをサービスに使っている担当者の方に話をして頂きました。
またLTも募集をして8名の方に話をして頂きました。

発表資料

発表に使用した資料は以下の通りです。

Chainer入門と最近の機能(@unnonouno)

CuPy解説(奥田)

超自然言語リアルタイム解析をサービスに組み込んだ話(@ixixi)

http://qiita.com/ixixi/items/a3d56b2db6e09249a519

Capitalicoでのchainer 1.1→1.5バージョンアップ事例(@arrow_elpis)

ディープラーニングにおける学習の高速化の重要性とその手法(@yukofuji)

学習済み Caffe モデルを移植してみた(@ohtysk)

ボケるRNNを学習したい(@aonotas)

深層学習ライブラリのプログラミングモデル(yutakashino)

Chainer向けGUI環境DEEPstationについて(shi3z)

Webアプリ診断AIの開発(bbr_bbq)

デモ画面

Chainer ハンズオン勉強会について(@SnowGushiGit)

アカデミアでの Chainer 利用の実例 深層ニューラルネットワークを用いた日本語形態素解析(@Ace12358)

Chainer: Development Plan(@beam2d)

Chainer Contribution Guide(@@delta2323)

イベントの雰囲気

IMG_20151219_175632IMG_20151219_171928

 

IMG_20151219_164703IMG_20151219_163707

IMG_20151219_165531IMG_20151219_163104

Chainerドーナツスポンサー

今回、Chainerロゴにそっくりのドーナツをエヌディビア合同株式会社の@yukofuji様に準備頂きました!ありがとうございます!その他にチョコや本もご提供頂きありがとうございます!
(セブ○イレブ○のドーナツが一番そっくりだったんですが、1週間前に関東で販売を停止してしまいました。。。)

CWkPmRlVAAAfegICWkPmReU8AAd-03

今後のイベント開催予定

懇親会等でも継続的にイベントを開催して欲しいとの声をたくさん頂きました。(実は)次回イベントも準備中です。詳細が決まり次第またconnpass等で告知しますので、お待ち下さい!

EMNLP2015読み会を開催しました

海野 裕也
リサーチャー

2015-11-02 10:59:34

海野です。10/24に、リクルートテクノロジーズさんの会議室で、EMNLP2015読み会を開催しました。
10件の発表と、およそ40人の参加者が集まりました。
昨年も開催しましたが、規模が2倍程度になり、この分野への注目度が伺えます。

特にEmbeding系の論文が多かったらしく、EMNLPのEはEmbeddingのEではないか、という皮肉があったそうです。
10本の発表中、2本がattentionベースの手法で、Embedding、RNNに続いて次のトレンドになりつつあるのかなという感触を得ました。

当日のTwitterの様子は、togetterにまとめました

最後に、会場提供や運営を手伝っていただいた、リクルートテクノロジーズ様と、@yag_aysさんに感謝いたします。

続きを読む »

Chainer Meetup #0 を開催しました。

Hideto Masuoka

2015-10-19 13:57:49

2015年10月14日に、Chainer Meetup #0を開催しました。

こんにちは、PFI エンジニアの舛岡です(前回の松元さんに習い自己紹介を後ろに書きました)。製品事業部で、何でも屋として仕事をしています。research ブログに投稿する日が来るとは思ってませんでした。

Meet Upの概要

今回のMeet Upは、「開発陣がコントリビュータの方に会ってみよう」をコンセプトに開催をしました。(開発陣の2名が出張でいないという・・・・)。そのため、コントリビュータの方を招待し、13名の方に参加して頂きました。

まず始めに得居さんから、Chainer 1.5の開発方針について話をし、その後、参加者の皆様に以下の内容でLTをして頂きました。

  • Chainerをどのような場面で使用されているのか?
  • Chainerの良いところ
  • Chainerの改善点・もっとこうしてほしい

LTの総括

Chainerをどのような場面で使用されているのか?
  • RNN/CNNのプロトタイピング
  • 画像認識(研究/ウェブサービス)
  • 自動翻訳
  • 為替市場の時系列データ分析
  • 音声認識

など

Chainerの良いところ
  • 環境構築が簡単
  • 可読性が高い
  • 複雑なネットワークを構築できる
  • 入力データを柔軟に変更できる

など

Chainerの改善点・もっとこうしてほしい
  • Save/load機能
  • もう少し速度がほしい
  • コミュニティの強化:交流会増やして欲しい
  • ベンチマークが欲しい

などなど

発表資料

以下は、発表資料(アップされたのもののみ)です。

@beam2d


@mitmulさん


@jnoryさん



@sinhrksさん

@jnishiさん


@y-tag
https://docs.google.com/presentation/d/1d2VTgaPpdHM2dgSNX7HEL2K-_YgditTa2wuqoejxD5Q/edit?usp=sharing

@odashi

@kikusu

感想

Chainerがどのような場所で使われているか、どういう課題があるかを知ることができました。
今後も継続的にこのようなイベントは行う予定です。
詳細が決まり次第ご連絡します。

 

ICML2015読み会を開催しました

大野 健太
エンジニア

2015-08-31 08:31:28

大野です。夏も終わりますね。

先日8月20日に、株式会社ドワンゴ様のセミナールームにて、ICML2015読み会を開催いたしました。

トップレベルの会議に投稿された論文を真正面から紹介する勉強会でしたので、どの位の方々が興味を持つのか不安がありましたが、幸いにも前回のNIPS2014読み会に引き続き、100名近くの方に参加していただきました。休憩時間も含めて多くのディスカッションや質問がなされていたようです。懇親会にも40名近くの方々が参加していただきました、懇親会では、発表もしていただいた神嶌さんによるKDDの参加報告も行われました。

また、今回初めての試みとして、当日の様子をドワンゴ研究開発チャンネルにて生放送配信しました。私の予想をはるかに超えて、のべ1000名弱の方が来場したようです。ご視聴いただきありがとうございました。配信に関する感想なども今後の参考にさせていただきます。

参加者、発表者、視聴者の皆様のご協力で充実した勉強会になったと考えております。ご参加いただきありがとうございました。また、会場提供及び生放送配信をしていただいたドワンゴ様には改めてお礼を申し上げます。今回の勉強会を踏まえて、今後も機械学習の勉強会を継続して開催していきたいと考えておりますので、ご賛同・ご協力いただけると大変ありがたいです。

アンケート結果

続きを読む »

Deep Learningと音声認識

西鳥羽 二郎
エンジニア

2015-07-16 13:00:10

西鳥羽です。こんにちは。

本日セミナーで「Deep Learningと音声認識」という内容で(ustreamで公開されているけども)社内セミナーで紹介させて頂きました。タイトルは前回の「Deep Learningと自然言語処理」に被せてます。

Broadcast live streaming video on Ustream

こちらがその資料になります。尚、セミナーでは「話し言葉コーパス」とすべきところを「書き言葉コーパス」としてしまっていました。資料では訂正してあります。

また、個々の参照は以下の通りです。

CTC関数に関しては以下が詳しいです。Chainerで実装してますがちゃんと動くようになったら公開したいですね。

Deep Learning のフレームワーク Chainer を公開しました

beam2d
リサーチャー

2015-06-09 15:09:35

こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。

本日、Deep Learning の新しいフレームワークである Chainer を公開しました。

Chainer 公式サイト
GitHub – pfnet/chainer
Chainer Documentation

Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。

  • Python のライブラリとして提供(要 Python 2.7+)
  • あらゆるニューラルネットの構造に柔軟に対応
  • 動的な計算グラフ構築による直感的なコード
  • GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能

ニューラルネットをどのように書けるか

次のコードは多層パーセプトロンの勾配を計算する例です。

from chainer import FunctionSet, Variable
import chainer.functions as F

# 多層パーセプトロンの定義
model = FunctionSet(l1=F.Linear( 784, 1000),
                    l2=F.Linear(1000, 1000),
                    l3=F.Linear(1000, 10))
def forward(x_data, y_data):
    x, t = Variable(x_data), Variable(y_data)
    h1 = F.relu(model.l1(x))
    h2 = F.relu(model.l2(h1))
    y  = model.l3(h2)
    return F.softmax_cross_entropy(y, t)

# 勾配計算
x_data, y_data = ...            # ミニバッチを初期化
loss = forward(x_data, y_data)  # 順伝播
loss.backward()                 # 逆伝播

ここで x_datay_data はともに NumPy または PyCUDA の配列です。順伝播の処理をそのまま書けば、あとは最終的な結果に対して backward 関数を実行することで、それまでに行った処理と逆順で誤差逆伝播が実行されます。この例はもっとも単純な例なので現れませんでしたが、順伝播の処理には分岐やループなど Python の制御構造を自由に含めることができます。

なぜ今新しいフレームワーク?

Deep Learning のフレームワークとしては Caffe, Theano/Pylearn2, Torch7 の 3 つが人気です。これらはフィードフォワードなネットワークを書くことが基本的な目標として開発されています。ですが、最近では Deep Learning の進展に伴い、より複雑なネットワークを柔軟に書けることの必要性が高まっています。そこで、この中でも特に自由度が高い Theano をベースに、新しいフレームワークがたくさん模索されています(例:Blocks, Keras, Lasagne, deepy など)。

これらのフレームワークを含め、既存の実装のほとんどは、一度ニューラルネット全体の構造をメモリ上に展開して、その処理を順に見てその通りに順伝播・逆伝播を実行するというアプローチを取っています。これは、独自のミニ言語に対するインタープリタを実装しているようなものです。例えば Caffe ならば Protocol Buffer で定義されたスキーマがミニ言語に対応します。Torch7 の場合には、コンテナと呼ばれる特殊なモジュールが制御構造の役割を果たします。Theano はより柔軟な定義が可能ですが、ループを書くために scan と呼ばれる特殊な機能を使います。このアプローチにおいて、より複雑な計算フローをサポートしようと思ったら、基本的にはこのミニ言語を拡充していく必要があり、学習コストや記述コストは高くなっていきます。基本的には今後、ニューラルネットの構造はさらに複雑化していくことを考えると、この展開は好ましくありません。

Chainer はこれとは異なるアプローチを取ります。Python をベースとしていますが、Theano は使いません。制御構造はすべて Python のものがそのままつかえます。Chainer は、実際に Python のコードを用いて入力配列に何の処理が適用されたかだけを記憶しておき、それを誤差逆伝播の実行に使います。このアプローチは、複雑化していく Deep Learning の研究・開発速度を保つために必要だと考えており、私たちが新しいフレームワークの開発に乗り出した理由です。

使い方

ドキュメントも同時に公開しました。チュートリアルとリファレンスを提供しています。チュートリアルでは、基本的な多層パーセプトロンの書き方から、リカレントネットの書き方、GPGPU の利用法などを紹介しています。今のところドキュメントはすべて英語のみとなっていますが、要望が大きければ日本語への翻訳も検討します。

また、公式リポジトリ内の examples ディレクトリの中にサンプルがいくつか入っています。こちらは、実際にデータの読み込みから学習までを Chainer で書く方法を知るのに適しています。

質問やバグ報告

Chainer はまだ公開されたばかりのフレームワークで、機能面ではまだまだ足りない部分もあります。PFI/PFN の Chainer 開発チームでは、これから継続的に開発を行い、定期的に新しいバージョンをリリースしていく予定です。プルリクエストも受け付けます(今のところ Contribution Guide のような文書はありませんが、今後用意する予定です)。

使用法やバグについての報告も随時受け付けます。使用法の質問については、Google Groupsを開設しましたので、こちらに投稿してください。また、バグの報告や修正については、GitHub の Issue やプルリクエストを登録していただければと思います。GitHub のアカウントをお持ちでない場合は、Google Groups へ投稿していただいても構いませんし、Twitter アカウント (@ChainerOfficial)にメンションを送って頂いても対応可能です。

12